How to prove the following product?
sin(x)x=(1+xπ)(1−xπ)(1+x2π)(1−x2π)(1+x3π)(1−x3π)⋯
Answer
Real analysis approach.
Let α∈(0,1), then define on the interval [−π,π] the function f(x)=cos(αx) and 2π-periodically extended it the real line. It is straightforward to compute its Fourier series. Since f is 2π-periodic and continuous on [−π,π], then its Fourier series converges pointwise to f on [−π,π]:
f(x)=2αsinπαπ(12α2+∞∑n=1(−1)nα2−n2cosnx),x∈[−π,π]
Now take x=π, then we get
cotπα−1πα=2απ∞∑n=11α2−n2,α∈(−1,1)
Fix t∈(0,1). Note that for each α∈(0,t) we have |(α2−n2)−1|≤(n2−t2)−1 and the series ∑∞n=1(n2−t2)−1 is convergent. By Weierstrass M-test the series in the right hand side of (2) is uniformly convergent for α∈(0,t). Hence we can integrate (2) over the interval [0,t]. And we get
lnsinπtπt=∞∑n=1ln(1−t2n2),t∈(0,1)
Finally, substitute x=πt, to obtain
sinxx=∞∏n=1(1−x2π2n2),x∈(0,π)
Complex analysis approach
We will need the following theorem (due to Weierstrass).
Let f be an entire function with infinite number of zeros {an:n∈N}. Assume that a0=0 is zero of order r and lim, then
f(z)= z^r\exp(h(z))\prod\limits_{n=1}^\infty\left(1-\frac{z}{a_n}\right) \exp\left(\sum\limits_{k=1}^{p_n}\frac{1}{k}\left(\frac{z}{a_n}\right)^{k}\right)
for some entire function h and sequence of positive integers \{p_n:n\in\mathbb{N}\}. The sequence \{p_n:n\in\mathbb{N}\} can be chosen arbitrary with only one requirement - the series
\sum\limits_{n=1}^\infty\left(\frac{z}{a_n}\right)^{p_n+1} is uniformly convergent on each compact K\subset\mathbb{C}.
Now we apply this theorem to the entire function \sin z. In this case we have a_n=\pi n and r=1. Since the series
\sum\limits_{n=1}^\infty\left(\frac{z}{\pi n}\right)^2
is uniformly convergent on each compact K\subset \mathbb{C}, then we may choose p_n=1. In this case we have
\sin z=z\exp(h(z))\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)
Let K\subset\mathbb{C} be a compact which doesn't contain zeros of \sin z. For all z\in K we have
\ln\sin z=h(z)+\ln(z)+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\ln\left(1-\frac{z}{\pi n}\right)+\frac{z}{\pi n}\right)
\cot z=\frac{d}{dz}\ln\sin z=h'(z)+\frac{1}{z}+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\frac{1}{z-\pi n}+\frac{1}{\pi n}\right)
It is known that (here you can find the proof)
\cot z=\frac{1}{z}+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\frac{1}{z-\pi n}+\frac{1}{\pi n}\right).
hence h'(z)=0 for all z\in K. Since K is arbitrary then h(z)=\mathrm{const}. This means that
\sin z=Cz\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)
Since \lim\limits_{z\to 0}z^{-1}\sin z=1, then C=1. Finally,
\frac{\sin z}{z}=\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)= \lim\limits_{N\to\infty}\prod\limits_{n=-N,n\neq 0}^N\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)=
\lim\limits_{N\to\infty}\prod\limits_{n=1}^N\left(1-\frac{z^2}{\pi^2 n^2}\right)= \prod\limits_{n=1}^\infty\left(1-\frac{z^2}{\pi^2 n^2}\right)
This result is much more stronger because it holds for all complex numbers. But in this proof I cheated because series representation for \cot z given above require additional efforts and use of Mittag-Leffler's theorem.
No comments:
Post a Comment