Sunday, November 8, 2015

sequences and series - Proving $frac{sin x}{x} =left(1-frac{x^2}{pi^2}right)left(1-frac{x^2}{2^2pi^2}right) left(1-frac{x^2}{3^2pi^2}right)cdots$



How to prove the following product?

$$\frac{\sin(x)}{x}=
\left(1+\frac{x}{\pi}\right)
\left(1-\frac{x}{\pi}\right)
\left(1+\frac{x}{2\pi}\right)
\left(1-\frac{x}{2\pi}\right)
\left(1+\frac{x}{3\pi}\right)
\left(1-\frac{x}{3\pi}\right)\cdots$$


Answer



Real analysis approach.




Let $\alpha\in(0,1)$, then define on the interval $[-\pi,\pi]$ the function $f(x)=\cos(\alpha x)$ and $2\pi$-periodically extended it the real line. It is straightforward to compute its Fourier series. Since $f$ is $2\pi$-periodic and continuous on $[-\pi,\pi]$, then its Fourier series converges pointwise to $f$ on $[-\pi,\pi]$:
$$
f(x)=\frac{2\alpha\sin\pi\alpha}{\pi}\left(\frac{1}{2\alpha^2}+\sum\limits_{n=1}^\infty\frac{(-1)^n}{\alpha^2-n^2}\cos nx\right),
\quad x\in[-\pi,\pi]\tag{1}
$$
Now take $x=\pi$, then we get
$$
\cot\pi\alpha-\frac{1}{\pi\alpha}=\frac{2\alpha}{\pi}\sum\limits_{n=1}^\infty\frac{1}{\alpha^2-n^2},
\quad\alpha\in(-1,1)\tag{2}
$$

Fix $t\in(0,1)$. Note that for each $\alpha\in(0,t)$ we have $|(\alpha^2-n^2)^{-1}|\leq(n^2-t^2)^{-1}$ and the series $\sum_{n=1}^\infty(n^2-t^2)^{-1}$ is convergent. By Weierstrass $M$-test the series in the right hand side of $(2)$ is uniformly convergent for $\alpha\in(0,t)$. Hence we can integrate $(2)$ over the interval $[0,t]$. And we get
$$
\ln\frac{\sin \pi t}{\pi t}=\sum\limits_{n=1}^\infty\ln\left(1-\frac{t^2}{n^2}\right),
\quad t\in(0,1)
$$
Finally, substitute $x=\pi t$, to obtain
$$
\frac{\sin x}{x}=\prod\limits_{n=1}^\infty\left(1-\frac{x^2}{\pi^2 n^2}\right),
\quad x\in(0,\pi)
$$




Complex analysis approach



We will need the following theorem (due to Weierstrass).




Let $f$ be an entire function with infinite number of zeros $\{a_n:n\in\mathbb{N}\}$. Assume that $a_0=0$ is zero of order $r$ and $\lim\limits_{n\to\infty}a_n=\infty$, then
$$
f(z)=
z^r\exp(h(z))\prod\limits_{n=1}^\infty\left(1-\frac{z}{a_n}\right)

\exp\left(\sum\limits_{k=1}^{p_n}\frac{1}{k}\left(\frac{z}{a_n}\right)^{k}\right)
$$
for some entire function $h$ and sequence of positive integers $\{p_n:n\in\mathbb{N}\}$. The sequence $\{p_n:n\in\mathbb{N}\}$ can be chosen arbitrary with only one requirement $-$ the series
$$
\sum\limits_{n=1}^\infty\left(\frac{z}{a_n}\right)^{p_n+1}
$$ is uniformly convergent on each compact $K\subset\mathbb{C}$.




Now we apply this theorem to the entire function $\sin z$. In this case we have $a_n=\pi n$ and $r=1$. Since the series
$$

\sum\limits_{n=1}^\infty\left(\frac{z}{\pi n}\right)^2
$$
is uniformly convergent on each compact $K\subset \mathbb{C}$, then we may choose $p_n=1$. In this case we have
$$
\sin z=z\exp(h(z))\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)
$$
Let $K\subset\mathbb{C}$ be a compact which doesn't contain zeros of $\sin z$. For all $z\in K$ we have
$$
\ln\sin z=h(z)+\ln(z)+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\ln\left(1-\frac{z}{\pi n}\right)+\frac{z}{\pi n}\right)
$$

$$
\cot z=\frac{d}{dz}\ln\sin z=h'(z)+\frac{1}{z}+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\frac{1}{z-\pi n}+\frac{1}{\pi n}\right)
$$
It is known that (here you can find the proof)
$$
\cot z=\frac{1}{z}+\sum\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(\frac{1}{z-\pi n}+\frac{1}{\pi n}\right).
$$
hence $h'(z)=0$ for all $z\in K$. Since $K$ is arbitrary then $h(z)=\mathrm{const}$. This means that
$$
\sin z=Cz\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)

$$
Since $\lim\limits_{z\to 0}z^{-1}\sin z=1$, then $C=1$. Finally,
$$
\frac{\sin z}{z}=\prod\limits_{n\in\mathbb{Z}\setminus\{0\}}\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)=
\lim\limits_{N\to\infty}\prod\limits_{n=-N,n\neq 0}^N\left(1-\frac{z}{\pi n}\right)\exp\left(\frac{z}{\pi n}\right)=
$$
$$
\lim\limits_{N\to\infty}\prod\limits_{n=1}^N\left(1-\frac{z^2}{\pi^2 n^2}\right)=
\prod\limits_{n=1}^\infty\left(1-\frac{z^2}{\pi^2 n^2}\right)
$$

This result is much more stronger because it holds for all complex numbers. But in this proof I cheated because series representation for $\cot z$ given above require additional efforts and use of Mittag-Leffler's theorem.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...