Suppose we have $n \times n$ symmetric matrix $A$ with all diagonal entries zero and remaining entries are non negative. Let $B$ be the matrix obtained from $A$ by deleting its $k$th row and $k$th column and remaining entries of $B$ are less equal the corresponding entries of $A$. Then the largest eigenvalue of $B$ is less equal the largest eigenvalue of $A$ and the smallest eigenvalue of $A$ is less equal the smallest eigenvalue of $B$.
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment