Determine for which real values of α and q the following series converges ∞∑n=1cos(α√n)nq?
So far I managed to prove that 1) for q⩽ the series diverges; 2) for q>1,\alpha\in\mathbb{R} the series converges absolutely; 3) for $0
How to approach the problem for the case $0
Answer
By the Euler-MacLaurin formula, we have
S(k) := \sum_{n = 1}^k \cos (\alpha\sqrt{n}) = \int_1^k \cos (\alpha \sqrt{t})\,dt + O(1).
Further,
\begin{align} \int_1^k \cos (\alpha \sqrt{t})\,dt &= 2\int_1^{\sqrt{k}} u\cos (\alpha u)\,du\\ &= \frac{2}{\alpha}\bigl[u\sin (\alpha u)\bigr]_1^{\sqrt{k}} - \frac{2}{\alpha}\int_1^{\sqrt{k}} \sin (\alpha u)\,du \end{align}
shows \lvert S(k)\rvert \leqslant \frac{4}{\lvert\alpha\rvert}\sqrt{k} + O(1) \leqslant C\sqrt{k} for some constant C \in (0,+\infty).
Then a summation by part shows
\begin{align} \Biggl\lvert\sum_{n = m}^k \frac{\cos (\alpha \sqrt{n})}{n^q}\Biggr\rvert &= \Biggl\lvert\sum_{n = m}^k \bigl(S(n) - S(n-1)\bigr) n^{-q}\Biggr\rvert\\ &\leqslant \frac{\lvert S(k)\rvert}{k^q} + \frac{\lvert S(m-1)\rvert}{m^q} + \Biggl\lvert \sum_{n = m}^{k-1} S(n) \biggl(\frac{1}{n^q} - \frac{1}{(n+1)^q}\biggr)\Biggr\rvert\\ &\leqslant C\Biggl( k^{\frac{1}{2}-q} + m^{\frac{1}{2}-q} + \sum_{n = m}^{k-1}\frac{q}{n^{q+\frac{1}{2}}}\Biggr)\\ &\leqslant \tilde{C}\cdot m^{\frac{1}{2}-q} \end{align}
for q > \frac{1}{2}.
So as D. Thomine expected, the series converges for q > \frac{1}{2} and \alpha \in \mathbb{R}\setminus \{0\}. The argument given in the comment shows (when the details are carried out) that the series is divergent for q \leqslant \frac{1}{2}.
No comments:
Post a Comment