Wikipedia has the following to say about fields.
In mathematics, a field is one of the fundamental algebraic structures used in abstract algebra. It is a nonzero commutative division ring, or equivalently a ring whose nonzero elements form an abelian group under multiplication. As such it is an algebraic structure with notions of addition, subtraction, multiplication, and division satisfying the appropriate abelian group equations and distributive law.
What is an intuitive way about thinking about a field?
No comments:
Post a Comment