We have to evaluate:
limx→∞(x2+5x+3x2+x+3)x
My work:
Let the desired limit equal a constant L.
When I take log of both sides, the exponent x comes down. What do I do now? Where will we apply L'Hopital's rule? Can we do it without the rule also?
The answer is e4.
Answer
ln(limx→+∞(x2+5x+3x2+x+3)x)=limx→+∞(x(ln(x2+5x+3)−ln(x2+x+3)))
=limx→+∞ln(x2+5x+3)−ln(x2+x+3)1x
L'Hop=limx→+∞2x+5x2+5x+3−2x+1x2+x+3−1x2
=limx→+∞(x2(2x+1)x2+x+3−x2(2x+5)x2+5x+3)
=limx→+∞4x2(x2−3)(x2+x+3)(x2+5x+3)
=limx→+∞4(1−3x2)(1+1x+3x2)(1+5x+3x2)=4
No comments:
Post a Comment