Saturday, July 29, 2017

calculus - Find $limlimits_{n to infty} frac{x_n}{n}$ when $limlimits_{n to infty} x_{n+k}-x_{n}$ exists





Let $(x_n)_{n \geq 1}$ be a sequence with real numbers and $k$ a fixed natural number such that $$\lim_{n \to \infty}(x_{n+k}-x_n)=l$$



Find
$$\lim_{n \to \infty} \frac{x_n}{n}$$




I have a strong guess that the limit is $\frac{l}{k}$ and I tried to prove it using the sequence $y_n=x_{n+1}-x_n$. We know that $\lim_{n \to \infty}(y_n+y_{n+1}+\dots+y_{n+k-1})=l$ and if we found $\lim_{n \to \infty}y_n$ we would have from the Cesaro Stolz lemma that $$\lim_{n \to \infty}\frac{x_n}{n}=\lim_{n \to \infty}y_n$$


Answer



For fixed $m \in \{ 1, \ldots, k \}$ the sequence $(y_n)$
defined by $y_n = x_{m+kn}$ satisfies

$$
y_{n+1} - y_n = x_{(m+kn) + k} - x_{m+kn} \to l \, ,
$$
so that Cesaro Stolz can be applied to $(y_n)$. It follows that $\frac{y_n}{n} \to l$ and
$$
\frac{x_{m+kn}}{m+kn} = \frac{y_n}{n} \cdot \frac{n}{m+kn} \ \to \frac{l}{k} \text{ for } n \to \infty \, .
$$
This holds for each $m \in \{ 1, \ldots, k \}$, and therefore
$$
\lim_{n \to \infty} \frac{x_n}{n} = \frac lk \, .

$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...