I have seen the Fresnel integral
$$\int_0^\infty \sin x^2\, dx = \sqrt{\frac{\pi}{8}}$$
evaluated by contour integration and other complex analysis methods, and I have found these methods to be the standard way to evaluate this integral. I was wondering, however, does anyone know a real analysis method to evaluate this integral?
Answer
Let $u=x^2$, then
$$
\int_0^\infty \sin(u) \frac{\mathrm{d} u}{2 \sqrt{u}}
$$
The real analysis way of evaluating this integral is to consider a parametric family:
$$\begin{eqnarray}
I(\epsilon) &=& \int_0^\infty \frac{\sin(u)}{2 \sqrt{u}} \mathrm{e}^{-\epsilon u} \mathrm{d} u = \frac{1}{2} \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}\int_0^\infty u^{2n+\frac{1}{2}} \mathrm{e}^{-\epsilon u} \mathrm{d} u \\ &=& \frac{1}{2} \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \Gamma\left(2n+\frac{3}{2}\right) \epsilon^{-\frac{3}{2}-2n} \\
&=& \frac{1}{2 \epsilon^{3/2}} \sum_{n=0}^\infty \left(-\frac{1}{\epsilon^2}\right)^n\frac{\Gamma\left(2n+\frac{3}{2}\right)}{\Gamma\left(2n+2\right)} \\
&\stackrel{\Gamma-\text{duplication}}{=}&\frac{1}{2 \epsilon^{3/2}} \sum_{n=0}^\infty \left(-\frac{1}{\epsilon^2}\right)^n\frac{\Gamma\left(n+\frac{3}{4}\right)\Gamma\left(n+\frac{5}{4}\right)}{\sqrt{2} n! \Gamma\left(n+\frac{3}{2}\right)} \\
&=& \frac{1}{(2 \epsilon)^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} {}_2F_1\left(\frac{3}{4}, \frac{5}{4}; \frac{3}{2}; -\frac{1}{\epsilon^2}\right) \\
&\stackrel{\text{Euler integral}}{=}& \frac{1}{(2 \epsilon)^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} \frac{1}{\operatorname{B}\left(\frac{5}{4}, \frac{3}{2}-\frac{5}{4}\right)} \int_0^1 x^{\frac{5}{4}-1} (1-x)^{\frac{3}{2}-\frac{5}{4} -1} \left(1+\frac{x}{\epsilon^2}\right)^{-3/4} \mathrm{d} x \\
&=& \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{2}\right)} \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{1}{4}\right)} \int_0^1 x^{\frac{5}{4}-1} (1-x)^{\frac{1}{4} -1} \left(\epsilon^2+x\right)^{-3/4} \mathrm{d} x
\end{eqnarray}
$$
Now we are ready to compute $\lim_{\epsilon \to 0} I(\epsilon)$:
$$\begin{eqnarray}
\lim_{\epsilon \to 0} I(\epsilon) &=& \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \int_0^1 x^{\frac{1}{2}-1} \left(1-x\right)^{\frac{1}{4}-1} \mathrm{d} x = \frac{1}{2^{3/2}} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} \\ &=& \frac{1}{2^{3/2}} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\frac{\pi}{2}}
\end{eqnarray}
$$
No comments:
Post a Comment