Saturday, April 20, 2019

calculus - Evaluating the definite integral $int_{-infty}^{+infty} mathrm{e}^{-x^2}x^n,mathrm{d}x$



I recognize that the $\int_0^\infty \mathrm{e}^{-x}x^n\,\mathrm{d}x = \Gamma(n+1)$ and $\int_{-\infty}^{+\infty} \mathrm{e}^{-x^2}\,\mathrm{d}x = \sqrt{\pi}$. I am having difficulty, however with $\int_{-\infty}^{+\infty} \mathrm{e}^{-x^2}x^n\,\mathrm{d}x$. By the substitution $u=x^2$, this can be equivalently expressed as $\frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{e}^{-u}u^{\frac{n-1}{2}}\,\mathrm{d}u$. This integral is similar to the first one listed (which equates to the $\Gamma$ function), except that its domain spans $\mathbb{R}$ like the second integral (which equates to $\sqrt{\pi}$). Any pointers on how to evaluate this integral would be helpful.


Answer




Let $I_n:=\int_{-\infty}^{+\infty}e^{-x^2}x^ndx$. If $n$ is odd then $I_n=0$ and for $p\geq 1$:
\begin{align}
I_{2p}&=\int_0^{+\infty}e^{-x^2}x^{2p}dx+\int_{-\infty}^0e^{-x^2}x^{2p}dx\\
&=\int_0^{+\infty}e^{-t^2}t^{2p}dt+\int_0^{+\infty}e^{-t^2}(-t)^{2p}dt\quad (\mbox{left: } t=x,\mbox{right: } t=-x)\\
&=2\int_0^{+\infty}e^{-t^2}t^{2p}dt\\
&=2\int_0^{+\infty}e^{-s}s^p\frac 1{2\sqrt s}ds \quad (s=t^2)\\
&=\int_0^{+\infty}e^{-s}s^{p-1/2}ds\\
&=\left[-e^{-s}s^{p-1/2}\right]_0^{+\infty}+\int_0^{+\infty}e^{—s}\left(p-\frac 12\right)s^{p-1-1/2ds}\\
&=\left(p-\frac 12\right)I_{2(p-1)}.
\end{align}

Finally we get $I_{2p+1}=0$ and $I_{2p}=\sqrt \pi\prod_{j=1}^p\left(j-\frac 12\right)$ for all $p\geq 0$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...