Sunday, March 5, 2017

sequences and series - find frac36+frac3cdot56cdot9+frac3cdot5cdot76cdot9cdot12+cdots




find 36+3569+3576912+



I had (1x)pq in mind.
S=36+3569+3576912+

S+1=1+36+3569+3576912+
S+1=1+32!3+3(3+2)3!9+3(3+2)(3+4)4!27+
S+1=1+32!(232)+3(3+2)3!(232)2+3(3+2)(3+4)4!(232)3+
S+1=(123)32
I got S=331



But answer given is S=334


Answer



In the last step, you miss some multiple of 3, and you miss one term of the expansion.




S=\sum_{n\geq 1} \frac{(2n+1)!!}{(n+1)!3^n}=\sum_{n\geq 1} \binom{-\frac{1}{2}}{n+1}\frac{(-2)^{n+1}}{3^n}=3\sum_{n\geq 1} \binom{-\frac{1}{2}}{n+1}\left(\frac{-2}{3}\right)^{n+1}=3\left(\left(1-\frac{2}{3}\right)^{-\frac{1}{2}}-1-\frac{1}{3}\right)=3\sqrt{3}-4.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...