find 36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯
I had (1−x)−pq in mind.
S=36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯
S+1=1+36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯
S+1=1+32!⋅3+3⋅(3+2)3!⋅9+3⋅(3+2)⋅(3+4)4!⋅27+⋯
S+1=1+32!(232)+3⋅(3+2)3!(232)2+3⋅(3+2)⋅(3+4)4!(232)3+⋯
S+1=(1−23)−32
I got S=3√3−1
But answer given is S=3√3−4
Answer
In the last step, you miss some multiple of 3, and you miss one term of the expansion.
S=\sum_{n\geq 1} \frac{(2n+1)!!}{(n+1)!3^n}=\sum_{n\geq 1} \binom{-\frac{1}{2}}{n+1}\frac{(-2)^{n+1}}{3^n}=3\sum_{n\geq 1} \binom{-\frac{1}{2}}{n+1}\left(\frac{-2}{3}\right)^{n+1}=3\left(\left(1-\frac{2}{3}\right)^{-\frac{1}{2}}-1-\frac{1}{3}\right)=3\sqrt{3}-4.
No comments:
Post a Comment