Suppose that the series ∑an converges. Prove that lim.
Not sure how to do this my attempt:
WTS:\forall \epsilon > 0, \exists N > 0, such that for all n \in \mathbb N, if n > N, then |a_n - 0| < \epsilon
Let \epsilon > 0 be arbitrary
Choose N such that |a_n - 0| < \epsilon
Suppose n > N, then |a_n - 0| < \epsilon
I am not sure.
Answer
Let A_n := \displaystyle \sum_{k=1}^n a_k. Note that a_n = A_n - A_{n-1}.
Then, \displaystyle \sum_{k=1}^\infty a_k := \lim_{n\to\infty} A_n = L.
Now, since the sum converges:
\forall \varepsilon_1 > 0: \exists N_1 \in \Bbb N: \forall n > N_1:|A_n-L| < \varepsilon_1
Now, we need to prove that a_n goes to zero:
\forall \varepsilon_2 > 0: \exists N_2 \in \Bbb N: \forall n > N_2:|a_n| < \varepsilon_2
To prove that, let \varepsilon_1 = \dfrac12\varepsilon_2. Now, we have N_1 from the assumption. Let N_2 = N_1+1. For any n > N_2:
\begin{array}{rcll} |A_{n+1} - L| &<& \dfrac12 \varepsilon_2 & \text{assumption} \\ |A_n - L| &<& \dfrac12 \varepsilon_2 & \text{assumption} \\ |A_{n+1} - A_n| &<& |A_{n+1} - L| + |A_n - L| & \text{triangle inequality} \\ &<& \dfrac12 \varepsilon_2 + \dfrac12 \varepsilon_2 \\ &=& \varepsilon_2 \\ |a_n| &<& \varepsilon_2 & \text{conclusion} \end{array}
No comments:
Post a Comment