Thursday, September 3, 2015

trigonometry - How to prove this quasi-geometric trigonometric series identity without induction

$$\frac{2}{\sin{x}}\sum_{r=1}^{n-1} \sin{rx}\cos{[(n-r)y]} \equiv \frac{\cos{(nx)}-\cos{(ny)}}{\cos{x}-\cos{y}} - \frac{\sin{(nx)}}{\sin{x}}$$



The identity can be tediously proven using the Axiom of Induction.



I am looking for other means of proving this identity.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...