How to prove
∫∞0erf(x)erfc(x)dx=√2−1√π with erfc(x) is the complementary error function, I have used integration by part but i don't succed
Answer
The given integral equals
4π∫+∞0∫x0e−a2da∫+∞xe−b2dbdx=4π∭
or
\frac{4}{\pi}\iint_{0\leq a\leq b}(b-a)e^{-(a^2+b^2)}\,da\,db = \frac{4}{\pi}\int_{0}^{+\infty}\int_{0}^{\pi/4}(\cos\theta-\sin\theta)\rho^2 e^{-\rho^2}\,d\theta \,d\rho
or
\frac{4}{\pi}(\sqrt{2}-1)\int_{0}^{+\infty}\rho^2 e^{-\rho^2}\,d\rho = \frac{4}{\pi}(\sqrt{2}-1)\frac{\sqrt{\pi}}{4}=\color{red}{\frac{\sqrt{2}-1}{\sqrt{\pi}}}.
No comments:
Post a Comment