I want to find out sum of the following series:
(mm)+(m+1m)+(m+2m)+...+(nm)
My try:
(mm)+(m+1m)+(m+2m)+...+(nm) = Coefficient of xm in the expansion of (1+x)m+(1+x)m+1+...+(1+x)n
Or, Coefficient of xm
(1+x)m((1+x)n−1)1+x−1
=(1+x)m+n−(1+x)mx
But, how to proceed further?
Note: m≤n
Answer
Other way
(km)=(k+1m+1)−(km+1)
we have
n∑k=m(km)=n∑k=m[(k+1m+1)−(km+1)]=(n+1m+1)
Also
Let xi∈N and
x1+x2+x3+⋯+xk+2=n+2
No comments:
Post a Comment