Sunday, January 1, 2017

linear algebra - From the characteristic matrix to solutions for the characteristic equation (Polynomial)




There's something about the determinant which I don't get, so if someone could explain step-by-step how this is done, it would be much appreciated:



It's about finding eigenvalues via. the characteristic polynomial




  • Example $$K_A(\lambda)=A-\lambda E=\left( \begin{matrix}4 && -2 \\ 3 && -1\end{matrix} \right)- \left(\begin{matrix}\lambda && 0 \\ 0 && \lambda \end{matrix} \right)=\left( \begin{matrix} 4-\lambda && -2 \\ 3 && -1-\lambda \end{matrix} \right)$$



We then calculate:
$K_A(\lambda)=det\big[\left( \begin{matrix}4-\lambda && -2 \\ 3 && -1-\lambda\end{matrix} \right) \big]$




I don't get how you deduce that $det\big[\left( \begin{matrix}4-\lambda && -2 \\ 3 && -1-\lambda\end{matrix} \right) \big]=(4-\lambda)\cdot(-1-\lambda)-(-2)\cdot 3=\lambda^2-3\lambda+2$


Answer



You have a wrong minus sign:



$det\big[\left( \begin{matrix}4-\lambda && -2 \\ 3 && -1-\lambda\end{matrix} \right) \big]=(4-\lambda)\color {red}-(-1-\lambda)-(-2)\cdot 3=\lambda^2-3\lambda+2$



the correct determinat is



$det\big[\left( \begin{matrix}4-\lambda && -2 \\ 3 && -1-\lambda\end{matrix} \right) \big]=(4-\lambda)\cdot(-1-\lambda)-(-2)\cdot 3=\lambda^2-3\lambda+2$



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...