Calculate the definite integral
I=∫π0sin2xa2+b2−2abcosxdx
given that a>b>0.
My Attempt:
If we replace x by C, then
I=∫π0sin2Ca2+b2−2abcosCdC
Now we can use the Cosine Formula (A+B+C=π). Applying the formula gives
cosC=a2+b2−c22aba2+b2−2abcosC=c2
From here we can use the formula sinAa=sinBb=sinCc to transform the integral to
I=∫π0sin2Cc2dC=∫π0sin2Aa2dC=∫π0sin2Bb2dC
Is my process right? If not, how can I calculate the above integral?
Answer
We have
Im(a,b)=∫π0cos(mx)a2−2abcosx+b2dx={πa2−b2ifm=0πa2−b2(ba)mifm≠0
Proof can be seen here. Hence
∫π0sin2xa2+b2−2abcosxdx=12∫π01−cos2xa2+b2−2abcosxdx=12[πa2−b2−πa2−b2(ba)2]=π2a2
No comments:
Post a Comment