Calculate the definite integral
$$
I=\int_0^{\pi} \frac{\sin^2 x}{a^2+b^2-2ab \cos x}\;\mathrm dx
$$
given that $a>b>0$.
My Attempt:
If we replace $x$ by $C$, then
$$
I = \int_{0}^{\pi}\frac{\sin^2 C}{a^2+b^2-2ab\cos C}\;\mathrm dC
$$
Now we can use the Cosine Formula ($A+B+C=\pi$). Applying the formula gives
$$
\begin{align}
\cos C &= \frac{a^2+b^2-c^2}{2ab}\\
a^2+b^2-2ab\cos C &= c^2
\end{align}
$$
From here we can use the formula $\dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c}$ to transform the integral to
$$
\begin{align}
I &= \int_{0}^{\pi}\frac{\sin^2 C}{c^2}\;\mathrm dC\\
&= \int_{0}^{\pi}\frac{\sin^2A}{a^2}\;\mathrm dC\\
&= \int_{0}^{\pi}\frac{\sin^2 B}{b^2}\;\mathrm dC
\end{align}
$$
Is my process right? If not, how can I calculate the above integral?
Answer
We have
$$\eqalign{I_m(a,b)=
\int_0^\pi\frac{\cos(mx)}{a^2-2ab\cos x+b^2}\,\mathrm dx
&=\left\{\matrix{\frac{\pi}{a^2-b^2}&\hbox{if}&m=0\\\cr
\frac{\pi}{a^2-b^2}\left(\frac{b}{a}\right)^m&\hbox{if}&m\ne0
}\right.}$$
Proof can be seen here. Hence
\begin{align}
\int_0^{\pi} \frac{\sin^2 x}{a^2+b^2-2ab \cos x}\,\mathrm dx&=\frac{1}{2}\int_0^{\pi} \frac{1-\cos2 x}{a^2+b^2-2ab \cos x}\,\mathrm dx\\
&=\frac{1}{2}\left[\frac{\pi}{a^2-b^2}-\frac{\pi}{a^2-b^2}\left(\frac{b}{a}\right)^2\right]\\
&=\frac{\pi}{2 a^2}
\end{align}
No comments:
Post a Comment