Friday, January 27, 2017

calculus - Calculation of $int_0^{pi} frac{sin^2 x}{a^2+b^2-2ab cos x}mathrm dx$




Calculate the definite integral




$$
I=\int_0^{\pi} \frac{\sin^2 x}{a^2+b^2-2ab \cos x}\;\mathrm dx
$$



given that $a>b>0$.




My Attempt:




If we replace $x$ by $C$, then



$$
I = \int_{0}^{\pi}\frac{\sin^2 C}{a^2+b^2-2ab\cos C}\;\mathrm dC
$$



Now we can use the Cosine Formula ($A+B+C=\pi$). Applying the formula gives



$$
\begin{align}

\cos C &= \frac{a^2+b^2-c^2}{2ab}\\
a^2+b^2-2ab\cos C &= c^2
\end{align}
$$



From here we can use the formula $\dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c}$ to transform the integral to



$$
\begin{align}
I &= \int_{0}^{\pi}\frac{\sin^2 C}{c^2}\;\mathrm dC\\

&= \int_{0}^{\pi}\frac{\sin^2A}{a^2}\;\mathrm dC\\
&= \int_{0}^{\pi}\frac{\sin^2 B}{b^2}\;\mathrm dC
\end{align}
$$



Is my process right? If not, how can I calculate the above integral?


Answer



We have
$$\eqalign{I_m(a,b)=
\int_0^\pi\frac{\cos(mx)}{a^2-2ab\cos x+b^2}\,\mathrm dx

&=\left\{\matrix{\frac{\pi}{a^2-b^2}&\hbox{if}&m=0\\\cr
\frac{\pi}{a^2-b^2}\left(\frac{b}{a}\right)^m&\hbox{if}&m\ne0
}\right.}$$
Proof can be seen here. Hence
\begin{align}
\int_0^{\pi} \frac{\sin^2 x}{a^2+b^2-2ab \cos x}\,\mathrm dx&=\frac{1}{2}\int_0^{\pi} \frac{1-\cos2 x}{a^2+b^2-2ab \cos x}\,\mathrm dx\\
&=\frac{1}{2}\left[\frac{\pi}{a^2-b^2}-\frac{\pi}{a^2-b^2}\left(\frac{b}{a}\right)^2\right]\\
&=\frac{\pi}{2 a^2}
\end{align}


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...