More precisely:
Prove using only the ϵ-N definition of convergence that if lim and a_n>-1 for all n\in \mathbb{N}, then \lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2} .
Here's what I have so far:
- Let \{a_n\} be a sequence and suppose \lim\limits_{n \to \infty}a_n=1 and a_n>-1 for all n\in \mathbb{N}.
- Then for all \epsilon>0, there exists N\in \mathbb{N} such that for all n\ge N, |a_n-1|<\epsilon by the \epsilon-N definition of convergence.
- Then $-\epsilon
- Then -\epsilon<1+a_n-2<\epsilon
- Then \frac{1}{-\epsilon}<\frac{1}{1+a_n}-\frac{1}{2}<\frac{1}{\epsilon}
- Then |\frac{1}{1+a_n}-\frac{1}{2}|<\frac{1}{\epsilon}
- Let \epsilon'=\frac{1}{\epsilon}
- Then for all \epsilon'>0, there exists N\in \mathbb{N} such that for all n\ge N, |\frac{1}{1+a_n}-\frac{1}{2}|<\epsilon'
- Therefore, \lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2} by the \epsilon-N definition of convergence.
Is this a valid proof? In particular, I am not sure about step 5. Intuition tells me that it is correct; but I am not 100% sure about the algebra.
Answer
You should start with \frac{1}{1+a_n} rather than a_n. Here is a standrad answer.
For any \epsilon>0, we want to find an N such that for all n>N, \left|\frac{1}{1+a_n}-\frac12\right|=\frac{|2-(1+a_n)|}{2(1+a_n)}=\frac{|1-a_n|}{2(1+a_n)}<\epsilon. Since \lim a_n=1, there exists an N_1 such that a_n>0 for any n>N_1. Choose N_2 such that |1-a_n|<2\epsilon for any n>N_2. Let N=\max{(N_1,N_2)}, then for any n>N, we have \frac{|1-a_n|}{2(1+a_n)}<\frac{2\epsilon}{2}=\epsilon. From the definition we finally prove the desired result.
No comments:
Post a Comment