Monday, August 31, 2015

real analysis - How do you prove that if $limlimits_{n to infty}a_n=1$, then $limlimits_{n to infty}frac{1}{1+a_n}=frac{1}{2}$?


More precisely:


Prove using only the $\epsilon$-$N$ definition of convergence that if $\lim\limits_{n \to \infty}a_n=1$ and $a_n>-1$ for all $n\in \mathbb{N}$, then $\lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2}$ .


Here's what I have so far:


  1. Let $\{a_n\}$ be a sequence and suppose $\lim\limits_{n \to \infty}a_n=1$ and $a_n>-1$ for all $n\in \mathbb{N}$.

  2. Then for all $\epsilon>0$, there exists $N\in \mathbb{N}$ such that for all $n\ge N$, $|a_n-1|<\epsilon$ by the $\epsilon$-$N$ definition of convergence.

  3. Then $-\epsilon

  4. Then $-\epsilon<1+a_n-2<\epsilon$


  5. Then $\frac{1}{-\epsilon}<\frac{1}{1+a_n}-\frac{1}{2}<\frac{1}{\epsilon}$

  6. Then $|\frac{1}{1+a_n}-\frac{1}{2}|<\frac{1}{\epsilon}$

  7. Let $\epsilon'=\frac{1}{\epsilon}$

  8. Then for all $\epsilon'>0$, there exists $N\in \mathbb{N}$ such that for all $n\ge N$, $|\frac{1}{1+a_n}-\frac{1}{2}|<\epsilon'$

  9. Therefore, $\lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2}$ by the $\epsilon$-$N$ definition of convergence.

Is this a valid proof? In particular, I am not sure about step 5. Intuition tells me that it is correct; but I am not 100% sure about the algebra.


Answer



You should start with $\frac{1}{1+a_n}$ rather than $a_n$. Here is a standrad answer.


For any $\epsilon>0$, we want to find an $N$ such that for all $n>N$, $$\left|\frac{1}{1+a_n}-\frac12\right|=\frac{|2-(1+a_n)|}{2(1+a_n)}=\frac{|1-a_n|}{2(1+a_n)}<\epsilon.$$ Since $\lim a_n=1$, there exists an $N_1$ such that $a_n>0$ for any $n>N_1$. Choose $N_2$ such that $|1-a_n|<2\epsilon$ for any $n>N_2$. Let $N=\max{(N_1,N_2)}$, then for any $n>N$, we have $$\frac{|1-a_n|}{2(1+a_n)}<\frac{2\epsilon}{2}=\epsilon.$$ From the definition we finally prove the desired result.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...