Monday, August 31, 2015

real analysis - How do you prove that if limlimitsntoinftyan=1, then limlimitsntoinftyfrac11+an=frac12?


More precisely:


Prove using only the ϵ-N definition of convergence that if lim and a_n>-1 for all n\in \mathbb{N}, then \lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2} .


Here's what I have so far:


  1. Let \{a_n\} be a sequence and suppose \lim\limits_{n \to \infty}a_n=1 and a_n>-1 for all n\in \mathbb{N}.

  2. Then for all \epsilon>0, there exists N\in \mathbb{N} such that for all n\ge N, |a_n-1|<\epsilon by the \epsilon-N definition of convergence.

  3. Then $-\epsilon

  4. Then -\epsilon<1+a_n-2<\epsilon


  5. Then \frac{1}{-\epsilon}<\frac{1}{1+a_n}-\frac{1}{2}<\frac{1}{\epsilon}

  6. Then |\frac{1}{1+a_n}-\frac{1}{2}|<\frac{1}{\epsilon}

  7. Let \epsilon'=\frac{1}{\epsilon}

  8. Then for all \epsilon'>0, there exists N\in \mathbb{N} such that for all n\ge N, |\frac{1}{1+a_n}-\frac{1}{2}|<\epsilon'

  9. Therefore, \lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2} by the \epsilon-N definition of convergence.

Is this a valid proof? In particular, I am not sure about step 5. Intuition tells me that it is correct; but I am not 100% sure about the algebra.


Answer



You should start with \frac{1}{1+a_n} rather than a_n. Here is a standrad answer.


For any \epsilon>0, we want to find an N such that for all n>N, \left|\frac{1}{1+a_n}-\frac12\right|=\frac{|2-(1+a_n)|}{2(1+a_n)}=\frac{|1-a_n|}{2(1+a_n)}<\epsilon. Since \lim a_n=1, there exists an N_1 such that a_n>0 for any n>N_1. Choose N_2 such that |1-a_n|<2\epsilon for any n>N_2. Let N=\max{(N_1,N_2)}, then for any n>N, we have \frac{|1-a_n|}{2(1+a_n)}<\frac{2\epsilon}{2}=\epsilon. From the definition we finally prove the desired result.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...