More precisely:
Prove using only the $\epsilon$-$N$ definition of convergence that if $\lim\limits_{n \to \infty}a_n=1$ and $a_n>-1$ for all $n\in \mathbb{N}$, then $\lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2}$ .
Here's what I have so far:
- Let $\{a_n\}$ be a sequence and suppose $\lim\limits_{n \to \infty}a_n=1$ and $a_n>-1$ for all $n\in \mathbb{N}$.
- Then for all $\epsilon>0$, there exists $N\in \mathbb{N}$ such that for all $n\ge N$, $|a_n-1|<\epsilon$ by the $\epsilon$-$N$ definition of convergence.
- Then $-\epsilon
- Then $-\epsilon<1+a_n-2<\epsilon$
- Then $\frac{1}{-\epsilon}<\frac{1}{1+a_n}-\frac{1}{2}<\frac{1}{\epsilon}$
- Then $|\frac{1}{1+a_n}-\frac{1}{2}|<\frac{1}{\epsilon}$
- Let $\epsilon'=\frac{1}{\epsilon}$
- Then for all $\epsilon'>0$, there exists $N\in \mathbb{N}$ such that for all $n\ge N$, $|\frac{1}{1+a_n}-\frac{1}{2}|<\epsilon'$
- Therefore, $\lim\limits_{n \to \infty}\frac{1}{1+a_n}=\frac{1}{2}$ by the $\epsilon$-$N$ definition of convergence.
Is this a valid proof? In particular, I am not sure about step 5. Intuition tells me that it is correct; but I am not 100% sure about the algebra.
Answer
You should start with $\frac{1}{1+a_n}$ rather than $a_n$. Here is a standrad answer.
For any $\epsilon>0$, we want to find an $N$ such that for all $n>N$, $$\left|\frac{1}{1+a_n}-\frac12\right|=\frac{|2-(1+a_n)|}{2(1+a_n)}=\frac{|1-a_n|}{2(1+a_n)}<\epsilon.$$ Since $\lim a_n=1$, there exists an $N_1$ such that $a_n>0$ for any $n>N_1$. Choose $N_2$ such that $|1-a_n|<2\epsilon$ for any $n>N_2$. Let $N=\max{(N_1,N_2)}$, then for any $n>N$, we have $$\frac{|1-a_n|}{2(1+a_n)}<\frac{2\epsilon}{2}=\epsilon.$$ From the definition we finally prove the desired result.
No comments:
Post a Comment