Thursday, August 27, 2015

calculus - Limit of (cosxexln(1x)x)frac1x3



So I had the task to evaluate this limit




lim



I tried transforming it to:



e^{\lim_{x \to 0} \frac{ \ln{(\cos{xe^x} - \ln(1-x) -x)}}{x^3}}



So I could use L'hospital's rule, but this would just be impossible to evaluate without a mistake. Also, I just noticed this expression is not of form \frac{0}{0}.



Any solution is good ( I would like to avoid Taylor series but if that's the only way then that's okay).




I had this task on a test today and I failed to do it.


Answer



First notice that \cos (xe^x) = \sum_{n=0}^{\infty}(-1)^n \frac{(xe^x)^{2n}}{2n!}



and \ln (1 - x) = -\sum_{n=0}^{\infty} \frac{x^n}{n}



Thus \cos (xe^x) - \ln (1 - x) = \sum_{n=0}^{\infty}(-1)^n \frac{(xe^x)^{2n}}{2n!} +\sum_{n=0}^{\infty}\frac{x^n}{n} = 1 + x - \frac{2x^3}{3} - O(x^4)



Therefore we have




\ln (1 - \frac{2x^3}{3}) = - \frac{2x^3}{3} - \frac{2x^6}{9} - O(x^9)



Finally



\begin{align}\lim_{x \to 0} \frac{\ln (\cos xe^x - \ln (1 - x) - x)}{x^3} &= \lim_{x \to 0} -\frac{2}{3} - \frac{2x^3}{9} - O(x^6) =\color{red}{ -\frac{2}{3}}\end{align}



Now you may find your limit.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...