In a simple one-dimensional framework, it is known that the differentiability of a function (with bounded derivative) on an interval implies its Lipschitz continuity on that interval. However, non-differentiability does not implies non-Lipschitz continuity as shown by the function f:x→|x|. Still, there are functions that are not differentiable at a point and this argument is used to say that this same function is not Lipschitz-continuous at that point as, for example, f:x→√x at x=0 (we say that the slope of the function at that point is "vertical"). So my question is: is there a theorem telling us that for some functions (to be characterized), their non-differentiability implies their non-Lipschitz continuity? Or is this result obvious from the definition of Lipschitz continuity?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection f:A→B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...
-
Recently I took a test where I was given these two limits to evaluate: lim and $\lim_\limi...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between (0, 1] and [0,1] and I'm wondering if my bijection/proof is correct. Using the hint tha...
No comments:
Post a Comment