In a simple one-dimensional framework, it is known that the differentiability of a function (with bounded derivative) on an interval implies its Lipschitz continuity on that interval. However, non-differentiability does not implies non-Lipschitz continuity as shown by the function $f:x\to |x|$. Still, there are functions that are not differentiable at a point and this argument is used to say that this same function is not Lipschitz-continuous at that point as, for example, $f:x\to \sqrt{x}$ at $x=0$ (we say that the slope of the function at that point is "vertical"). So my question is: is there a theorem telling us that for some functions (to be characterized), their non-differentiability implies their non-Lipschitz continuity? Or is this result obvious from the definition of Lipschitz continuity?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment