Saturday, August 29, 2015

algebra precalculus - Summation Formula for Series

I have a series of the form :
\begin{equation}
\frac{1}{M-1} + \frac{q}{M-2} + \frac{q^2}{M-3} + \frac{q^3}{M-4} + \frac{q^4}{M-5}+\dots = \sum_{i=1} ^{M-1} \frac{q^{i-1}}{M-i}
\end{equation}
I want to solve this series to find a general formula that provides its sum. I am not able to figure out the best and easy way to proceed with this. I would be glad if anybody could point me the right direction for solving such series.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...