Find lim. I tried using l'Hospital rule with the continuity of e function. Also tried using Taylor expansion with no success. What should I do? Thank you.
Answer
\begin{align*} \lim_{x\to+\infty}\left(\frac{x+\log x}{x-\log x}\right)^{\frac x{\log x}} =&\lim_{x\to+\infty}\left(1+\frac{2\log x}{x-\log x}\right)^{\frac x{\log x}}\\ =&\lim_{x\to+\infty}\left(1+\frac{2}{\frac{x}{\log x}-1}\right)^{\frac x{\log x}}\\ =&\lim_{x\to+\infty}\left(1+\frac{2}{\frac{x}{\log x}-1}\right)^{\frac x{\log x}-1}\left(1+\frac{2}{\frac{x}{\log x}-1}\right)\\ =&e^2 \end{align*}
No comments:
Post a Comment