calculus - How can we compute $lim_{xrightarrow 0}frac{sin
(x)-x+x^3}{x^3}$ and $lim_{xrightarrow 0}frac{e^x-sin (x)-1}{x^2}$?
Could we compute the limits $$\lim_{x\rightarrow 0}\frac{\sin (x)-x+x^3}{x^3} \\ \lim_{x\rightarrow 0}\frac{e^x-\sin (x)-1}{x^2}$$ without using the l'Hospital rule and the Taylor expansion?
No comments:
Post a Comment